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Abstract. The simple shear flow of ordered and random, non-dilute and concentrated emulsions resembling foam
is considered in the presence of an insoluble surfactant. Numerical investigations conducted by the method of
interfacial dynamics for Stokes flow combined with an implicit finite-volume method for computing the evolution
of the surfactant concentration illustrate the effect of the surfactant on the rheological properties of the emulsion
and on the dynamics and stability of the evolving microstructure. Studies of ordered two-dimensional systems,
where the suspended phase is distributed on an evolving doubly-periodic lattice, show that, depending on the cap-
illary number, a surfactant may either destabilize or stabilize a concentrated emulsion by promoting or preventing
the rupture of thin films developing between the interfaces of adjacent drops. The capillary number, viscosity
ratio, and surfactant diffusivity are found to play an important role in determining the rheological properties of
the emulsion and the geometrical properties of the evolving microstructure. Large-scale numerical simulations of
random two-dimensional systems with 25 drops suspended in a doubly-periodic flow suggest that the qualitative
effect of a surfactant is not altered by strong hydrodynamic interactions associated with intercepting or clustering
drops.
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1. Introduction

Consider an emulsion consisting of a continous liquid phase and a dispersed liquid or gas
phase of a given constitution, and assume that the interfaces are clean and devoid of surfactants
and thus exhibit a constant and uniform surface tension γ . When the emulsion undergoes
simple shear flow with shear rate k, it exhibits a macroscopic or effective shear viscosity, and
develops effective normal stresses and associated normal-stress differences that depend on the
reduced shear rate expressed by the capillary number Ca ≡ µka/γ ; µ is the viscosity of the
continuous liquid phase, and a is a characteristic length indicative of the size of the dispersed
phase. Because of the ability of the suspended drops or bubbles to deform and thereby accom-
modate the incident shear flow as well as the perturbation flow generated by their peers, as the
capillary number is raised, the effective viscosity is reduced, and the emulsion behaves like a
shear-thinning and elastic composite medium.

Introducing a surfactant lowers the surface tension from the value γc corresponding to
a clean interface to the value γ0 that is determined by the surfactant concentration and the
physical properties of the materials involved. In hydrostatics, surfactants provide short-range
repulsion between closely-packed interfaces, and thereby stabilize the interfaces against coa-
lescence, prevent demixing, and allow for long-lived dispersions (e.g., [1]). In hydrodynamics,
the presence of a surfactant raises the capillary number above the value computed with respect
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to the surface tension of a clean interface, Cac ≡ µka/γc, and thereby tends to lower the
effective viscosity of the emulsion.

Now, under the influence of an imposed flow, an insoluble surfactant is convected and
diffuses over a stationary or evolving interface to prevent the establishment of strong surfactant
concentration gradients. The relative importance of convection and diffusion is determined by
the surfactant Péclét number Pe = ka2/Ds , where Ds is the surfactant surface diffusivity.
When the surfactant diffusivity is negligible, whereupon the Péclét number is infinite, the
surfactant is convected toward accumulation points until Marangoni tractions due to surface
tension gradients immobilize the interface and prevent further convective action, allowing for
a steady surfactant concentration distribution to be established at equilibrium.

In the limit of small shear rates or vanishing capillary number, the surfactant concentration
distribution is nearly uniform, and the effective rheological properties of an emulsion may be
deduced from those in the absence of surfactants; the correspondence is made for Ca0 = Ca,
where Ca0 ≡ µka/γ0 is the capillary number defined with respect to the surface tension of
an interface with a uniform distribution of surfactants and associated uniform surface tension
γ0. At higher shear rates, the analogy breaks down for two reasons. First, surfactant dilusion
due to interface stretching raises the surface tension toward the value γc corresponding to a
clean interface, and thereby lowers the capillary number and tends to increase the effective
viscosity of the emulsion. Second, the establishment of surfactant concentration gradients
and accompanied variations in surface tension generate Marangoni tractions that partially
immobilize portions of the interfaces, and thereby also raise the effective viscosity of the
emulsion. Thus, adding a surfactant may, in fact, cause an overall increase in the effective
viscosity of the emulsion with respect to the value observed in its absence.

The potentially subtle effect of surfactants on the rheology of emulsions has motivated a
detailed investigation of the individual or combined effects of (a) the sensitivity of the surface
tension to the surfactant concentration, known as the surface elasticity, (b) the surfactant dif-
fusivity expressed by the surfactant Péclét number, (c) and the capillary number expressing
the strength of the flow. Previous authors have studied these dependencies for infinitely dilute
systems where hydrodynamic interactions are negligible and the suspended bubbles or drops
may be studied in isolation [2, 3]. Our first goal in this work is to extend the previous results
to nondilute systems by considering ordered and random systems at non-infinitesimal volume
fractions.

Apart from their significance on rheology, surfactants also affect the stability of the dis-
persed phase, especially when the viscosity of the dispersed drops is significantly lower than
that of the continuous phase, and in the limit of high volume fractions. Under these conditions,
a concentrated emulsion reduces to a wet foam, and the hydrodynamics is dominated by
thin-film flows occurring between adjacent interfaces. Now, because of variations in surface
tension due to surfactant concentration gradients, certain portions of the interfaces are more
deformable than others, and thus more susceptible to the deforming action of the imposed flow.
The increased deformability may potentially lead to interface coalescence and film breakup
in the absence of a stabilizing action. Thus, while introducing a surfactant may be beneficial
on the rheological properties, it may nevertheless affect the stability of the dispersion in an
adverse way. Our second goal in this work is to explicitly demonstrate that surfactants may
either promote or undermine the stability of a concentrated emulsion resembling a foam.

As the volume fraction of the suspended phase tends to unity, a wet foam reduces to a dry
foam consisting of ordered or random arrangements of gas bubbles separated by thin films that
contain a negligible amount of liquid. The statics and rheology of dry foam have been studied
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Figure 1. A two-dimensional, doubly-periodic, polydisperse emulsion in the xy plane consisting of a continuous
liquid phase and a dispersed gaseous or liquid phase, undergoing simple shear flow.

extensively by previous authors, as reviewed by Reinelt and Kraynik [4]. The present work
addresses a complementary set of conditions where fluid motion plays an important role.

Our investigations rely on numerical studies based on a two-dimensional flow model in
which a doubly-periodic emulsion with a specified initial constitution evolves under the action
of simple shear flow. The motion of the interfaces is computed by the method of interfacial dy-
namics for Stokes flow, which involves advancing the position of the interfaces with a velocity
that arises by solving an integral equation of the second kind at each time step. The integral
representation is simplified by use of the doubly-periodic Green’s function of Stokes flow
which is available in the form of rapidly converging series. The evolution of the surfactant
concentration is computed by solving the convection-diffusion equation over the evolving
interfaces using a finite-volume method. In the numerical investigations, we consider ordered
systems with a dispersed phase of varying viscosity, and random systems with fluids of equal
viscosity. The results illustrate that surface tension variations due to surfactant inhomogeneity
affect the behavior of emulsions in several expected or new ways.

2. Flow model and mathematical formulation

Consider an idealized doubly-periodic, polydisperse, two-dimensional emulsion in the xy
plane consisting of a continuous liquid phase and a dispersed gaseous or liquid phase, as
illustrated in Figure 1. The suspension evolves under the action of a simple shear flow directed
along the x axis, where the x component of the velocity varies along the y axis with shear rate
k. In the absence of suspended bubbles or drops, the x and y components of the velocity of
the homogeneous fluid consisting of the continuous phase alone are given by

u∞
x = ky, u∞

y = 0. (1)

In the presence of suspended drops or bubbles, the periodicity of the emulsion is determined
by two evolving base vectors a1 and a2, defined such that the velocity and pressure remain



240 C. Pozrikidis

invariant when the origin is shifted by an arbitrary linear combination of these base vectors.
The first base vector a1 with length L points along the x axis and remains constant in time,
while the second base vector a2 is convected as though it were a material vector under the
influence of the unperturbed shear flow expressed by (1).

Each flow cell contains N bubbles or drops with generally different viscosities µi , i =
1, . . . N , suspended in an ambient liquid with viscosity µc, where the subscript c denotes
the continuous phase. The interface between the ith bubble or drop and the suspending fluid
exhibits surface tension γ that is allowed to vary over the interfaces due to the presence of an
insoluble surfactant.

The Reynolds number of the flow in the continuous phase and inside the drops is assumed
to be so small that the effect of fuid inertia is negligible, and the motion of the fluid is governed
by the linear equations of Stokes flow. Moreover, gravitational forces are assumed negligible,
and the drops are effectively neutrally buoyant. Subject to these assumptions, the velocity u
and pressure p in the continuous phase satisfy the continuity equation and the homogeneous
Stokes equation

∇ · u = 0, ∇p = µc ∇2u. (1)

The flow inside the ith drop is governed by the corresponding equations

∇ · u = 0, ∇p = µi ∇2u, (2)

where i = 1, . . . N .
The velocity is required to be continuous across the interfaces, but the hydrodynamic trac-

tion f = σ · n undergoes a discontinuity determined by the surface tension; σ is the Newtonian
stress tensor, and n is the unit vector normal to an interface pointing into the ambient fluid.
An interfacial force balance shows that the traction discontinuity across the mth interface is
given by

�f ≡ f(c) − f(m) = (σ (c) − σ (m)) · n = −∂(γ t)
∂l

= κ γ n − ∂γ

∂l
t, (3)

where κ = ∇ · n is the curvature of the interface in the xy plane, l is the arc length along the
interface measured from an arbitrary origin in the direction of the unit tangent vector t, the
superscript (c) denotes that the underlying variable is evaluate on the side of the continuous
phase, and the superscript (m) denotes that the underlying variable is evaluated on the side of
the mth drop or bubble.

An insoluble surfactant is present at each interface, and is both convected by the interfacial
velocity field and diffuses over the interface but not off the interface into the suspending or
suspended phase. The surfactant concentration � over the mth interface changes according to
the evolution equation

D�

Dt
= −� ∂(u · t)

∂l
− �κ u · n +Ds

∂2�

∂l2
, (4)

where D/Dt is the material derivative, and Ds is the surfactant diffusivity. The first and
second terms on the right-hand side of (4) express, respectively, changes in the surfactant
concentration due to interface stretching or expansion.

We shall assume that the surface tension is related to the surfactant concentration by the
linear equation of state
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γ = γ0

1 − β

(
1 − β

�

�0

)
, (5)

where β is a positive physicochemical constant expressing the sensitivity of the surface tension
to the surfactant concentration, and γ0 is the surface tension corresponding to the reference
surfactant concentration �0. The physical limitations of this linear relationship, which is ac-
curate only for small variations in the surfactant concentration, are discussed by Johnson and
Borhan [5].

The effective rheological properties of the emulsion are expressed by the effective stress
tensor σ Eff, defined as the areal average of the stress tensor over one period of the flow. Using
integral identities, we find that the effective stress tensor may be expressed in terms of line
integrals along the interfaces involving the jump in the interfacial traction and the interfacial
velocity, in the form

σ Eff
ij = −δij 〈p〉 + 2 µc〈eij 〉

+ 1

Ac

N∑
m=1

∫
Cm

[�fi xj − µc (1 − λm)(uinj + ujni)] dl,
(6)

where the pointed brackets denote the areal average, eij is the rate-of-deformation tensor, Cm
is the interface of the mth drop, Ac = |a1 × a2| is the area of each periodic flow cell, and
λm ≡ µm/µc is the viscosity ratio of the mth drop. The last term on the right-hand side of (6),
involving the sum, expresses the contribution of the suspended phase.

Considering the first term of the integrand in (6), we use Equation (3) and integrate by
parts to write∫

Cm

�fi xj dl =
∫
Cm

γ titj dl =
∫
Cm

γ (δij − ninj ) dl, (7)

where t is the unit vector tangent to the interface, and the surface tension is allowed to be
a function of position over the interface. Expression (6) allows us to compute the effective
stresses from knowledge of the interfacial distribution of the surface tension and velocity,
where the former is determined by the instantaneous surfactant distribution. When all viscosity
ratios are equal to unity, the distribution of the interfacial velocity is not required. Equation
(6) and the expression on the right-hand side of (7) are also applicable to three-dimensional
flow, provided that the integral with respect to arc length is replaced by a surface integral, and
Ac is replaced by the volume of a three-dimensional unit cell [4, 6].

The rheological properties of the emulsion under consideration are expressed by the effec-
tive shear viscosity defined asµEff ≡ σ Eff

xy /k, and the effective normal stress difference defined
as NEff ≡ σxx − σyy. The dimensionless effective viscosity and normal stress difference are
defined as µ̂Eff ≡ µEff/µc and N̂Eff ≡ NEff/(kµc).

Consider, for illustration, a laminated suspension consisting of N infinite bands oriented
along the x axis with uniform concentration of surfactants, and regard each period of a band
as a drop. Because the interfaces are flat, the jump in traction vanishes, and the integral after
the sum in (6) reduces to∫

Cm

(µm − µc)(uinj + ujni) dl = k(1 − δij )(µm − µc)Am, (8)
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where Am is the area occupied by the mth band. Substituting this expression in (6), we find
that the effective viscosity of the laminated fluid is equal to the weighted areal average of the
viscosity of the individual fluids, as expected.

In the case of a highly concentrated emulsion resembling a foam, adjacent interfaces be-
longing to different drops or bubbles are nearly parallel everywhere except at the Plateau
borders where the thin films meet at multiple junctions. In the absence of motion, or when the
foam is dry, the effective stress tensor is given by the simplified version of (6)

σ Eff
ij = −δij 〈p〉 + 1

Ac

N∑
m=1

∫
Cm

γ titj dl. (9)

When the surface tension is uniform, the effective pressure of the two-dimensional emulsion
is given by

pEff ≡ −1

2
Trace(σ Eff) = 〈p〉 − γ

2Ac

N∑
m=1

Lm, (10)

where Lm is the length of the mth interface. The first term on the right-hand side of (10) is
the area-averaged pressure over one period of the emulsion. Rearranging (10), we obtain an
equation of state for a stationary or dry foam,

pEffAc + γ

2

N∑
m=1

Lm = 〈p〉Ac, (11)

derived by previous authors on the basis of energetics or using the principle of virtual dis-
placements [7]. The counterpart of (11) for a three-dimensional foam is

pEffVc + 2γ

3

N∑
m=1

Sm = 〈p〉Vc, (12)

where Vc is the volume of a cell, and Sm is the surface area of the mth interface [7].

3. Integral representation and numerical method

To compute the evolution of the interfaces, we use the boundary integral formulation for two-
dimensional Stokes flow involving the doubly-periodic Green’s function (e.g., [8]). Choosing
as control volume one periodic flow cell, and exploiting the periodicity of the velocity and
pressure and the conforming periodicity of the Green’s function to discard integrals over
periodic segments confining the control volume, we find that the velocity at a point x0 located
in the suspending phase is given by the integral representation

uj(x0) = u∞
j (x0)− 1

4πµc

N∑
m=1

∫
Cm

�fi(x)G2D−2P
ij (x, x0)dl(x)

+ 1

4π

N∑
m=1

(1 − λm)

∫
Cm

ui(x)T 2D−2P
ijk (x, x0)nk(x)dl(x),

(13)
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where u∞ is the unperturbed flow given in (1). The kernels G2D−2P
ij (x, x0) and T 1P−W

ijk (x, x0)

of the single- and double-layer potential on the right-hand side of (9) are the doubly-periodic
Green’s functions of two-dimensional Stokes flow representing the velocity and stress at the
point x due to a lattice of point forces whose geometry corresponds to the instantaneous struc-
ture of the doubly-periodic emulsion; one of the point forces is located at the evaluation point
x0. Expressions for the Green’s functions in terms of rapidly converging Ewald sums have
been derived by van de Vorst [9] and are presented in adapted form that is consistent with
the present notation at the Appendix. Periodic Green’s functions of the equations of Stokes
flow, Laplace’s equation, and Helmholtz’s equation have been derived, discussed, and used in
boundary-integral formulations by several previous authors [10–17].

The velocity at a point x0 located inside the qth drop is given by the representation (9),
except that all terms on the right-hand side are divided by the viscosity ratio λq . Taking the
limit as the point x0 approaches the interface of the qth drop from the interior or exterior side,
and expressing the limit of the double-layer potential in terms of the principal value, we obtain
a system of integral equations for the velocity at the interfaces. For a point x0 located at the
interface of the qth drop, the integral equation reads

uj(x0) = 2

1 + λq

[
u∞
j (x0)− 1

4πµc

N∑
m=1

∫
Cm

�fi(x)G
2D−2P
ij (x, x0)dl(x)

+ 1

4π

N∑
m=1

(1 − λm)

∫ PV

Cm

ui(x)T
2D−2P
ijk (x, x0)nk(x)dl(x)

]
,

(14)

where PV denotes the principal value of the double-layer potential. When all viscosity ratios
λm are equal, finite, and non-zero, the integral equation (13) is known to have a unique solution
that may be computed by the method of successive substitutions. The properties of the integral
equation for the more general case of drops with unequal viscosities have not been established.

The integral equation for the interfacial velocity (13), and the convection-diffusion equa-
tion for the surfactant concentration (4) were solved using, respectively, a boundary element
and an implicit finite-volume method. In the numerical implementation, the integral equation
is transformed into a system of linear equations for the velocity at the nodes, and the linear
system is solved by Gauss elimination. Time integration was carried out by the second-order
Runge–Kutta method with a constant time step.

In the case of ordered emulsions, the Green’s function was computed in terms of truncated
Ewald sums, as discussed in the Appendix. In the case of random emulsions, the evaluation
was done by interpolation through prepared look-up tables with an estimated accuracy of five
significant digits. Marker points tracing the interfaces were adaptively redistributed to capture
the development of regions of high curvature and to ensure adequate spatial resolution. When
new marker points are introduced, the surfactant concentration is computed by fourth-order
interpolation with respect to the instantaneous arc length. In the case of ordered emulsions
discussed in Section 4, approximately 100 points are distributed along each interface; in the
case of random emulsions discussed in Section 5, approximately 30 points are distributed
along each one of the 25 interfaces of the dispersed drops.
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4. Ordered emulsions

In the first part of the numerical investigation, we consider ordered monodisperse emul-
sions where each flow cell of area Ac contains one drop of area AD and equivalent radius
a = √

AD/π . Previous studies have shown that the effect of the surfactant becomes most
significant when the viscosity of the dispersed phase is small compared to the viscosity of
the continuous phase [2, 3]. Accordingly, in the main body of the numerical studies, we set
the drop viscosity equal to 5% of the viscosity of the suspending fluid, corresponding to the
viscosity ratio λ = 0·05. Choosing a non-zero value for λ prevents numerical difficulties
related to the non-uniqueness of solution of the integral equation due to the implicit constraint
of the dispersed phase incompressibility [8].

At the initial instant, the drops are circular, and their centers are located at the vertices of a
hexagonal lattice described by the base vectors a1 = (L, 0) and a2 = (L/2,

√
3L/2), where

L is the distance between two neighboring drop centers, corresponding to the cell area Ac =√
3L2/2; consequently, the areal fraction of the suspended phase is φ = (a/L)2 (2π/(

√
3).

Maximum areal fraction for non-overlapping circular drops occurs when a = L/2, and is
equal to φMax = 0·907. Nondeforming circular drops moving along the x axis are able to
slide over one another as long as a is less than

√
3L/4 = 0·433L corresponding to the critical

areal fraction φcr = 0·680, which is pertinent to the limit of vanishing capillary number.
The initial distribution of the surfactant over the circular interfaces is uniform and equal

to �0; correspondingly, the initial surface tension is uniform and equal to γ0. Nondimension-
alizing all variables using as time scale the inverse shear rate k−1, length scale the hexagonal
lattice side length L, and stress scale µk, we find that the motion of the emulsion is determined
by the areal fraction φ, the capillary number Ca0 = kaµ/γ0 defined with respect to the hy-
drostatic surface tension, the sensitivity of the surface tension to the surfactant concentration
expressed by the dimensionless number β introduced in (5), and the surfactant Péclét number
Pe = ka2/Ds .

In the numerical simulations, each time step was carried out by the second-order Runge-
Kutta method requiring approximately 20 sec of CPU time on a 550 MHz Pentium PC run-
ning LINUX with the g77 FORTRAN compiler. The area of the drops and the total amount
of surfactant are conserved within a less than 0·1% numerical error across the length of a
simulation.

Drop interactions in a dilute emulsion at small and moderate areal fractions are weak, and
the behavior of the drops is similar to that exhibited by solitary drops suspended in infinite
shear flow studied by previous authors [2, 3]. Because of our particular interest in the dynamics
of concentration emulsions and foam, in the remainder of this section we focus our attention
on an emulsion with initial drop radius a = 0·4545L corresponding to the areal fraction
φ = 0·75, which is larger than the critical areal fraction 0·680 for geometrically permissible
motion of non-deformable drops.

4.1. CONSTANT SURFACE TENSION

To establish a point of reference, we begin by considering the motion in the absence of
surfactants where the interfaces have constant and uniform surface tension γ . At small cap-
illary numbers Ca ≡ µka/γ , the low deformability of the interfaces prevents overpassing
drops from sliding over one another; portions of the interfaces press against one another,
and coalescence occurs at a finite time. In the numerical simulations, we observe numerical
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oscillations over the upper and lower portions of the interfaces of intercepting drops due to
numerical inaccuracies and inadequate spatial resolution. As the capillary number is raised,
the interfaces become more deformable, and a time-periodic motion with period equal to the
period of recurrence of the hexagonal lattice, T = 2k−1/

√
3, is established.

Figure 2(a-e) depicts instantaneous interfacial profiles at time t = 3·96 k−1, for a sequence
of decreasing capillary numbers Ca = 0·4545, 0·2273, 0·09090, 0·04545, and 0·030. The dots
along the interfaces mark the location of the adaptively distributed interfacial marker points.
When Ca = 0·4545, corresponding to Figure 2(a), the drops exhibit significant deformation
and the films separating two adjacent drops that belong to the same row thin monotonically
in time, as will be discussed in the next paragraph. Lowering the capillary number reduces
the extent of the film flow and yields localized interfacial contact, as shown in Figure 2(b).
Further reduction in the capillary number allows the establishment of periodic motion where
the thickness of the films developing between adjacent drops that belong to the same row,
as well as the thickness of the films developing between overpassing drops, oscillate around
well-defined mean values, as shown in Figure 2(c). When the capillary number is reduced
below a certain threshold, thin films develop between the interfaces of overpassing drops,
as shown in Figure 2(d, e). When the capillary number is reduced further, we obtain strong
numerical evidence that the interfaces coalesce and the emulsion is destabilized at a finite
time, as discussed in the previous paragraph.

The nature of the motion is better illustrated by considering the time evolution of the
minimum thickness of the films separating adjacent interfaces, denoted by hmin, plotted in
Figure 3(a) with respect to dimensionless time t̂ ≡ t/T for Ca = 0·4545, 0·2273, 0·09090,
0·04545, and 0·030, where T = 2k−1/

√
3 is the period of recurrence of the hexagonal lattice.

The solidity of the lines is proportional to the capillary number; thus, the thickest line cor-
responds to Ca = 0·4545. All lines, with the exception of the dashed line corresponding to
Ca = 0·030, are for the films developing between adjacent drops that belong to the same row;
the dashed line corresponds to the strongly fluctuating film developing between overpassing
drops. The jumps in the lines for the two highest capillary numbers are due to a sudden shift of
the point of minimum film thickness due to interfacial deformation. The results presented in
Figure 3(a) show an overall monotonic decay of the minimum film thickness for Ca = 0·4545
and 0·2273, and thus suggest that the emulsion will be destabilized after a long and possibly
infinite evolution time, and confirm the establishment of periodic motion for moderate capil-
lary numbers. In reality, monotonically thinning fims are stabilized by interface repulsion due
to intermolecular forces arising at sufficiently small thicknesses.

Figure 3(b, c) shows the evolution of the effective viscosity and normal stress difference of
the emulsions depicted in Figure 2, for Ca = 0·4545, 0·2273, 0·09090, 0·04545, and 0·030.
The solidity of the lines is proportional to the capillary number. All lines originate from the
same non-zero and non-unit point corresponding to initially circular drops. The initial effective
viscosity has a small positive value, and the initial normal stress difference is zero due to the
isotropy of the circular interfaces. In all cases, a nearly periodic evolution with period equal
to T is observed at long times. The results shown in Figure 3(b, c) reveal that, as the capillary
number is raised, the mean value and the amplitude of fluctuations are both reduced, and the
emulsion behaves like a shear-thinning fluid with some elastic properties. The mean value of
the relative effective viscosity for Ca = 0·4545 is close to 1·1, which is higher by one order
of magnitude than the areal-averaged viscosity of the two fluids; this comparison underlines
the significance of the non-unidirectional motion.
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Figure 2. Instantaneous interfacial profiles in an ordered emulsion with a recurrent hexagonal structure in the
absence of surfactants, at the areal fraction φ = 0·75, at time t = 3·96 k−1, for a sequence of decreasing capillary
numbers: (a) Ca = 0·4545, (b) 0·2273, (c) 0·09090, (d) 0·04545, and (e) 0·030.
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Figure 3. (a) Time evolution of the minimum thickness of the films separating adjacent interfaces for the flows
depicted in Figure 2, corresponding to Ca = 0·4545, 0·2273, 0·09090, 0·04545, and 0·030; the solidity of the
lines is proportional to the capillary number; all lines, with the exception of the dashed line corresponding to
Ca = 0·030, are for the films developing between adjacent drops that belong to the same row. (b, c) Evolution of
the effective viscosity and normal stress difference of the suspension; the solidity of the lines is proportional to the
capillary number.
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Figure 4. Effect of the viscosity ratio in the absence of surfactants: Instantaneous interface profiles at time
t = 5·94 k−1, for φ = 0·75, Ca = 0·2273 and (a) λ = 0·05, (b) 1·0, (c) 5·0, and (d) 10·0.

The behavior described earlier in this section for low-viscosity drops with λ = 0·05
resembling incompressible bubbles is qualitatively similar to that reported by Li et al. [11]
for drops whose viscosity is equal to that of the suspending fluid, corresponding to viscosity
ratio λ of unity. To illustrate the effect of the viscosity ratio, in Figure 4(a-d) we display
instantaneous interface profiles at time t = 5·94k−1, for Ca = 0·2273 and λ = 0·05, 1·0, 5·0,
and 10·0. The results reveal that raising the viscosity of the drops promotes the deformation
of the interfaces, increases the extent of the thin-film-flow between neighboring drops that
belong to the same row, and results in sigmoidal and bulbous interfacial shapes. Previous
studies have shown that raising the viscosity ratio of solitary drops suspended in infinite shear
flow decreases the interface deformation, but also lowers the drop inclination which promotes
interactions in a concentrated suspension [18]. These differences underscore the significance
of strong hydrodynamic interactions in a concentrated emulsion.

Figure 5(a, b) illustrates the effect of the viscosity ratio on the effective viscosity of the
emulsion and on the normal stress difference. The thickness of the lines is proportional to
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Figure 5. Effect of the viscosity ratio on (a) the effective viscosity, and (b) normal stress difference of the
suspension; the thickness of the lines scales with the viscosity ratio.

the viscosity ratio, with the thickest line corresponding to λ = 10. The mean values of the
effective viscosity and normal stress difference are strong functions of the viscosity ratio, but
the amplitudes of the fluctuations show a weaker dependence. Figure 5(a) shows that the time
scale at which the emulsion approaches a periodic state significantly increases as the viscosity
ratio is raised, but the precise effect is hard to quantify.

4.2. EFFECT OF SURFACTANTS

Next, we investigate the effect of a surfactant with reference to the motion under constant
surface tension illustrated in Figure 2 for λ = 0·05. Figure 6(a, b) shows instantaneous
interface profiles after evolution time t = 3·96k−1 for capillary number Ca0 = 0·04545,
where Ca0 ≡ µka/γ0 is defined with respect to the surface tension of the initially circular
undeformed interfaces, γ0. The corresponding profiles for constant surface tension at the
same capillary number are shown in Figure 2(d). Figure 6(a) corresponds to β = 0·50 and
Pe = 1·0 where surfactant convection is comparable to diffusion, and Figure 6(b) corresponds
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to β = 0·50 and Pe = 10·0 where surfactant convection dominates diffusion. A comparison
of the three profiles reveals that the presence of a weakly diffusing surfactant reduces the film
thickness of adjacent drops, and thereby destabilizes the motion of a concentrated emulsion.

The mechanism by which this occurs becomes evident by inspecting the distribution of
the surfactant concentration over the interfaces plotted in Figure 6(c) with respect to the polar
angle θ measured the around center of a drop. The dashed line corresponds to Pe = 1, and the
dotted line corresponds to Pe = 10. The graphs reveal increased surfactant concentration over
the northeastern and southwestern portion of each interface, and reduced surfactant concen-
tration over the upper and lower side of each drop. The synergistic effect promotes the overall
drop deformation, causes a significant reduction in the film thickness between two drops that
belong to the same row, and tends to destabilize the emulsion.

When significant surfactant concentration and associated surface tension gradients have
been established, portions of the interfaces are partially immobilized due to the onset of
Marangoni tractions. Figure 6(d) shows the distribution of the tangential velocity over an
interface corresponding to the profiles shown in Figures 2(d) and 6(a, b) drawn, respectively,
with the solid, dashed, and dotted line. A significant reduction in the magnitude of the tangen-
tial velocity over the upper and lower portion of the interfaces is evident in the third case. If the
interfaces were completely immobilized, the drops would translate like arrays of rigid bodies
with strong lubrication forces developing between adjacent rows, and this would drastically
increase the effective rheological properties of the emulsion.

Figure 7(a) shows the time evolution of the minimum film thickness; the solid line corre-
sponds to constant surface tension, the dashed line corresponds to β = 0·50 and Pe = 1·0,
and the dotted line corresponds to β = 0·50 and Pe = 10·0. In spite of significant numerical
noise, it is evident that, in the third case, the minimum film thickness decreases monotonically
in time destabilizing the emulsion.

The presence of surfactants has a strong effect on the rheological properties of the emul-
sion. Figure 7(b, c) shows the evolution of the effective viscosity and normal stress difference
plotted with respect to reduced time t̂ = t/T . The mean values for β = 0·50 and Pe = 10·0
are higher that those for constant surface tension nearly by a factor of three due to the establish-
ment of significant Marangoni tractions. An analogous increase in the rheological properties of
a infinitely dilute emulsion of three-dimensional low-viscosity drops was reported previously
by Yon and Pozrikidis [3]. The present results show that the effect is much more pronounced
at non-infinitesimal volume fractions due to strong hydrodynamic interactions.

Further numerical simulations have shown that similar effects arise at higher capillary
numbers. Figure 8(a) shows instantaneous interface profiles at the higher capillary number
Ca0 = 0·4545 for β = 0·5 and Pe = 1·0; the corresponding profiles for constant surface
tension are shown in Figure 2(a). Comparing the two figures, we find that the presence of a
surfactant promotes the extent of the thin-film flow between adjacent interfaces, and causes
the formation of more slender diamond-shaped shapes. Figure 8(b) shows the distribution
of the surfactant concentration along one of the interfaces depicted in Figure 8(a), plotted
with respect to the polar angle measured around the center of a drop. The results reveal the
establishment of significant concentration gradients and associated Marangoni tractions.

Simulations at low capillary numbers showed that the accumulation of surfactant at the
northeastern and southwestern portions of the interfaces, and associated reduction in surface
tension, promotes the local deformability of the drops and allows overpassing drops to ac-
comodate one another with greater ease than in the case of constant surface tension. Thus,
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Figure 6. Effect of surfactants: Instantaneous interfacial profiles after evolution time t = 3·96 k−1, for capillary
number Ca0 = 0·04545, and (a) β = 0·50 and Pe = 1·0, or (b) β = 0·50 and Pe = 10·0. Interfacial distribution
of (d) the surfactant concentration, and (e) tangential velocity along the interfaces shown in (a) and (b).
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Figure 7. Evolution of (a) the minimum film thickness, and (b, c) effective rheological properties corresponding
to the motion illustrated in Figure 6. The solid lines are for constant surface tension, the dashed lines are for
Pe = 1·0, and the dotted lines are for Pe = 10·0.
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Figure 8. (a) Instantaneous interfacial profiles for Ca0 = 0·4545, β = 0·5 and Pe = 1·0; (b) associated
distribution of the surfactant concentration.

the presence of a surfactant promotes the stability of the evolving hexagonal lattice at low
capillary numbers.

5. Random emulsions

In the second part of the numerical investigation, we consider the shear flow of random sys-
tems with the main goal of studying the effect of a surfactant on the effective rheological
properties of the emulsion. At the initial instant, N identical circular drops of radius a are dis-
tributed randomly inside a doubly-periodic square computational box of side length L and cell
area Ac = L2, and the motion of the interfaces and evolution of the surfactant concentration
are computed using the numerical methods discussed in Section 3. Because of subtleties in,
and high computational cost required for solving integral equation for the interfacial velocity
[19, 20], only monodisperse systems with all viscosity ratios equal to unity were considered,
corresponding to viscosity ratios λm = 1 for m = 1, . . . N . Unfortunately, when the viscosity
of the suspended phase is comparable to, or greater than, the viscosity of the suspending
liquid, the effect of the surfactant is small. The significance of the present simulations then
lies in illustrating the qualitative effect of the surfactant, with the expectation that a similar but
more pronounced effect will be observed when the viscosity of the suspended phase is small.
Previous simulations for infinite dilute systems corroborate this expectation.

Four extended simulations with N = 25 drops suspended in each flow cell were carried
out at the low areal fraction φ = Nπa2/Ac = 0·10 and at the moderate areal fraction
φ = 0·40, for capillary numbers Ca = 0·15 or Ca0 = 0·15, corresponding, respectively, to
clean interfaces and to interfaces occupied by a surfactant. At this moderate capillary number,
the interfaces show substantial deformation but do not elongate so much as to develop con-
voluted shapes that undermine the accuracy of the simulations. In the presence of surfactants,
we set β = 0·50 to allow the surfactant to have a singificant influence, and Pe = 1·0 to
balance diffusion and convection. Higher values of Pe require increased spatial resolution that
could not be afforded with the available computational resources. Each simulation requires
approximately 8000 time steps, and each time step requires approximately 1 min of CPU time
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Figure 9. (a, b) Evolution of the reduced effective viscosity and normal stress difference of a dilute suspension
with areal fraction φ = 0·10. The thin line corresponds to clean interfaces with uniform surface tension, and
the heavy line corresponds to interfaces occupied by surfactants. (c) Instantaneous interfacial profiles, and (d)
associated distribution of the surfactant concentration.

on the computational facilities mentioned earlier, for a total cose of one week of CPU time
per case study.

Figure 9(a, b) shows the evolution of the reduced effective viscosity and normal stress
difference, µ̂Eff and N̂Eff defined in Section 3, for a dilute suspension with areal fraction
φ = 0·10. The thin line corresponds to clean interfaces with uniform surface tension, and
the heavy line corresponds to interfaces populated by surfactants. Li et al. [19] conducted
simulations in the absence of surfactants with 49 drops suspended in each unit cell using a
different implementation of the numerical method, and reported the mean values µ̂Eff = 1·16
and N̂Eff = 0·11, which are in excellent agreement with those deduced from the graphs shown
in Figure 9(a, b).

Comparing the two recordings in Figure 9(a, b), we find that the presence of a surfactant
raises the mean values and the amplitude of the fluctuations of the effective viscosity and nor-
mal stress difference; this is attributed to a decrease in the effective capillary number caused by
surfactant dilusion and to the onset of Marangoni tractions. A similar small effect was reported
previously for three-dimensional solitary drops corresponding to infinitely dilute emulsions
[2, 3]. Figure 9(c) shows an instantaneous snapshot of the computed interfacial profiles in the
presence of surfactants, illustrating occasional pairwise drop interceptions, and Figure 9(d)
shows the associated distribution of the surfactant concentration over all 25 interfaces plotted
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Figure 10. Same as Figure 9 but for the higher areal fraction φ = 0·40.

with respect to the polar angle measured around the center of each drop. The variation in the
surfactant concentration is approximately 15 % the initial uniform value. The corresponding
variation in the surface tension spans a comparable range.

Figure 10(a, b) shows the evolution of the reduced effective viscosity and normal stress
difference for a more concentrated suspension at the areal fraction φ = 0·40. The thin line
corresponds to uniform surface tension, and the heavy line corresponds to interfaces populated
by surfactants. Li et al. [19] conducted simulations with 49 drops in the absence of surfactants,
and reported the mean values µ̂Eff = 1·84 and N̂Eff = 0·86, which are in excellent agreement
with the mean values deduced from the graphs in Figure 10(a, b). The present of surfactant
raises these values only by a small amount. Thus, strong hydrodynamic interactions and multi-
ple drop interceptions do not alter the qualitative influence of the surfactant. An instantaneous
snapshot of the interfacial profiles is shown in Figure 10(c), and the associated distribution of
the surfactant concentration over the 25 interfaces is shown in Figure 10(d). The surfactant
concentration fluctuates over a range that is comparable to that observed previously at the
lower areal fraction. The most noriceable new feature is the large magnitude of the fluctuations
in the rheological properties due to strong and multiple drop interactions.
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6. Discussion

We have performed dynamical simulations to assess the effect of an insoluble surfactant on
the rheology and stability of ordered emulsions, and found that the non-uniform distribution
of a surfactant over the interfaces may either destabilize the emulsion or facilitate the motion
by allowing overpassing drops to accommodate each other’s presence. In the mathematical
model, we have neglected repulsive intermolecular forces that stabilize the thin films develop-
ing in a highly concentrated emulsion and foam against rupture; thus, destabilization should
be interpreted in the limited sense of pure hydrodynamics. In the parametric studies, we have
illustrated the effect of the viscosity ratio between the suspended and continuous phase, and
found it to have a significant influence on the extent of the thin-film flow.

In the second part of this study, we presented the results of large-scale dynamical sim-
ulations of the flow of random emulsions in the presence of a surfactant, considering the
case where the viscosity of the suspended phase is equal to the viscosity of the suspending
fluid, and found that surfactants raise the effective viscosity and the normal stress differences
at low and moderate areal fractions. A similar but stronger effect is expected for emulsions
with a low-viscosity suspended-phase; unfortunately, considerations of high computational
cost have prevented us from studying such systems. Overall, the present results suggest that
strong hydrodynamic interactions at high areal fractions do not alter the qualitative effect of
an insoluble surfactant documented in previous studies of dilute suspensions.
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Appendix

Consider the flow induced by a doubly-periodic array of two-dimensional point forces in the
xy plane located at the vertices of a lattice that is defined by the base vectors a(1) and a(2). One
of the point forces is located at the point x0 = (x0, y0), and the nth point force is located at the
point xn = (xn, yn), where xn = x0 + i a(1)x + j a(2)x , yn = y0 + i a(1)y + j a(2)y , i and j are two
integers, and the index n is defined in terms of the indices i and j using a double-summation
formula.

Following the Ewald summation method, we find that the Green’s function tensor for the
velocity is given by

Gij (x, x0) =
∑
n

{
δij [ 1

2E(r̂
2
n)− exp(−r̂2

n)] + (xi − xni )(xj − xnj )

r2
n

exp(−r̂2
n)

}

+ π

Ac

∑
m

4 + k̂2
m

|km|2 (δij − kmikmj
|km|2 ) cos[km · (x − x0)] exp(− k̂

2
m

4
),

(A1)

adapted from expression (2.20) of van de Vorst [9]. The first sum on the right-hand side of
(A1) with respect to n is over all point forces, and the second sum with respect to m is over
the vertices of the reciprocal lattice in wave-number space. The base vectors of the reciprocal
lattice are given by

b(1) = 1

Ac
a(2) × ez, b(2) = 1

Ac
ez × a(1), (A2)
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where Ac = |a(1) × a(2)| is the area of a unit cell; the vertices of the reciprocal lattice are
located at km = (kmx , kmy ), where kmx = i b(1)x + j b(2)x and kmy = i b(1)y + j b(2)y , i and j are
two integers, and the indexm is defined in terms of i and j using a double-summation formula;
the singular wave number corresponding to i = 0 and j = 0 is excluded from the second sum
in (A1). The rest of the symbols in (A1) are defined as follows: rn = √

(x − xn)2 + (y − yn)2

is the distance of the evaluation point from the nth point force; r̂n = ξ rn is the reduced
dimensionless distance; k̂m = |km|

ξ
is the reduced length of the mth wave numer, E is the

exponential integral, and ξ is the Ewald splitting parameter with dimensions of inverse length,
determining the balance of the sums in real and reciprocal space. In the limit as ξ tends to zero,
we obtain a representation in terms of sums in real space; in the limit as ξ tends to infinity,
we obtain a representation in terms of a double Fourier series in reciprocal space. In the
numerical computations, the exponential integral is computed using an accurate polynomial
approximation.

The corresponding Green’s function for the pressure, adapted from expression (2.20) of
van de Vorst [9], is

pj(x, x0) = 4π

Ac
(xj − x0j )+ 2

∑
n

xj − xnj

r2
n

exp(−r̂2
n)

+4π

Ac

∑
m

kmj
|km|2 sin[km · (x − x0)] exp

(
− k̂

2
m

4

)
.

(A3)

The first term on the right-hand side of (A3) contributes a linear pressure field that balances the
force imparted to the fluid by the point forces to satisfy the force balance over each periodic
cell. The associated Green’s function tensor for the stress, adapted from expressions (2.22) of
van de Vorst [9], is

Tijl(x, x0) = −δil 4π
Ac

(xj − x0j )

+2ξ 2
∑
n

exp(−r̂2
n)

[
δjl(xi − xni )+ δij (xl − xnl )

−2

(
1 + 1

r̂2
n

)
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n

]

+4π
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2
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4

)
.

(A4)

The first term on the right-hand side incorporates the linear variation of the normal stresses
due to the pressure.
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